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A previously developed perturbation-theory-to-all-orders formalism is applied to the 
of a “collisionless” electron plasma which is bounded by perfectly reflecting walls. The long-time 
damping rate is the same for the nth order electric field as for the first order. This result 
does not apply to the unbounded plasma. 

I. INTRODUCTION A natural question to ask, and one which could 
to give a full not be answered previously, is: HOW does the nth- I solution’ to the problem of the linearized motions order damping rate compare with the first-order 

of a “collisionless” electmll plasma which is con- rate? This question is very involved for the un- 
Cncd by perfectly reflepting n-ails. The malls could bounded case, but becomes almost trivial for the 
be infinite for the one-dimensional ’bOUndeci sit,ustiOii, by i.irt:le of the lower b l i n d  
case, or a rectangular parallelipiped. The device O n  d ~ o h t e  value of allowed iTa\~?~~llmh?r which 
similar to the method of images; it was possible to is introduced by the walls. The result, as will be 
h d  a uniquely defined ullbounded situatioll nrhich See11 belo1\-, is that the damping of the nth order 
reduced to the desired result within the boundaries, charge density (not distribution function) goes at 
and which automatically satisfied the reflection con- the rate as for the first order for 10% times. 
ditions for all time and all Xrelocities. The tech- I n  See- 11, the contents of reference 4 are SUm- 

niques of Landau2 could then be to the marked, and what we hope is a more lucid and 
equivalent unbounded situation. graphic demonstration of the principal result of 

It is also possible, as was shown t h e  ago,3.4 reference 4 is provided. The previously stated result 
to give a perturbation-theory-to-all~rders solution for the nth order damping rate is proved in Sec. 111. 
to the problem of the nonlinear oscillations of the Section IF- discusses the result, and also contains 
unbounded electmn plasma. The main result of some comments on an alternative procedure which 
reference 4 was to show that the phenomenon of has 
Landau damping, if present in first order (the linear 
Landau theory), will persist to all orders. 

D. Montgomery and D. Gorman, Phys. Fluids 5, 917 
(1962). See also S. Gartenhaus, Phys. Fluids 6, 151 (1963). 

* L. D. Landau, J. Phys. (USSR) 10, 25 (1946) 
8 D. Montgomrrv, Phys. Rev. 123, 1077 (1961). 
4 D. Montgomcrv and D. Gorman, Phgs. Rev. 124, 1309 

T has recently pmved 

been put 

11. THE PERSISTENCE OF DAMPING 

We restrict ourselves for simplicity to a one-dimen- 
siollal system. A ~ ~ c o ~ ~ i s i o n ~ e s s ~ ~  electron (charge -e ,  
mass m) plasma is assumed to move through a uni- 
form immobile background of positive charge of 

(1961) [Erratum, Phys. Rev. 126, 2261 (1962)l. density eN,. The electron distribution function 
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f(x, 21, t )  is assunicd to obey the Uoltzmann-Vlasov 
equation, 

where 

given f (2, v, 0) for all 2,  2'. 

Wc seek a forinal solution of the type 
m m 

whcrc terms with the same superscript arc assunicd 
to be of the hame order in the amplitude. It is 
assumed that of the various f ' " ) ,  only f"' and f'" 
are nonvanishing a t  t = 0. If f") = f o ( v )  is taken 
to be the spatially homogrncous part of f(.c, v, O), 
then the 72 = 1 terms of the series ( 2 )  arc identical 
with the Landau If we demand that the 
dist urharice f'" (2 ,  21, 0) introduce no nct chargc 
into thr  iystein, we hare 

f"(P) (h = N , ;  

If Fourier-Laplacc t raiisforms arc taken, 

/I f(l'(x, v ,  0) tJ.r dv = 0. (3)  

it is straightforwd to show that, for 72 grcattr 
than 1, 

In  the definition of D,,, the contour C is along 
the real v axis for Re p > 0, a i d  passes around the 
point v = ip / lc  if Re p 5 0, as in the Landau theory. 
The contour of p' integration in (9) is such that, 
on the contour: 

(i) Re ( p  - p')  is greater than the real parts 
of all the singularities of BE;!:D,, considered as a 
function of the complex variable p'; 

(ii) (T is a rcal nunher,  greater than the real parts 
of all the singularities of af:!i./du, Considered as a 
function of p' .  

So far, this defines the convolutions in I?q. (9) only 
for Re p sufficiently large and positive. The pos- 
sibilities for analytically continuing them in the 
direction of decreasing Re p (upon which the per- 
sistence of damping depends) remain to be discussed. 

1f7e restrict ourselves to the "stable" case: D,, # 0 
for Re p 2 0, for any h: # 0. 

Since S'"' contains only terms of order less than n, 
and since me know the n = 1 solution, we have a 
formal recipe for generating as many ordcrs as we 
like in powers of the amplitude. [Clearly, if f" ' / fo  
is Incasured by an amplitude E ,  then S'"' is O(E").] 
The process may be viewed as one in which the 
coupling terms S'"' feed the disturbance into the 
higher ordcrs as t increases. For more physical dis- 
tribution.: ( e g . ,  Maxwelliaiis) the integrals cannot 
be done rxplicitly,' and me are forced to see what 
iiiforniatioii call l w  extracted from the purely ana- 
lytic propertics of tlic Si;', coiisidered as a function 
of the. c~omplcx variable p .  

0k)scrve that if me can analytically continue 
J S:;' tlu,'(p + i l x )  a finite distance into the left 
half p plane for all k ,  then the inversion theorem for 
Laplac(. transforms, 

tells us that Eli:'(t) = O(e-mn') as t + a, where 
a,,(li) is rcal and positive. This i-, of course, subject 
to iiitegrahility requirements on SLi' (21) ; but these 
uppcar to I)? satisfied for all but thc most patho- 
logical f , " ' ( ~ .  0%) and f u ( i ~ ) ,  so we do not labor them 
here. \Ye assunic, to avoid unphysical complications, 
that:  

(a) f i" (u ,  0) arid fo(v)  are entire functions of v; 
(b) both these functions and all their derivatives 

with respect to v are absolutely integrable along 
lines parallel to the real v axis, and are well behaved 
and --$ 0 a t  infinity there; 

(c) f : ' ) ( u ,  0) is absolutely integrable in k ,  and is 
well behaved a t  infinity in k .  

We assert without proof that these conditions 
are sufficient to guarantee convergence of all the 
integrals which appear below. 

It will now be shown that J AS::) d u / ( p  + ilcv) 

5 For distributions which are reciprocals of polynomials, 
the integrals can be done, a t  least through second order. 
See H. R. Liemohn and F. I,. Scarf, Phys. Fluids 6,490 (1963), 
Sec. IV. 
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can be analytically coiitinued a finite distance into 
the left half of its p plane for all Ini p .  Xote that 
this quantity vanishes for k = 0; it is therefore 
sufficieiit to show the result for li # 0. To do this, 
it is necessary to know where the singularitics of 
EL:) and af:;’ l a u  arc. The singularities of E::’, as 
is well known, are poles which lie 011  the solutiolis of 

D,, = 0.  (1 1) 

We call the solutions of ( I  1) “ p ,  (1;)”. By hypoth- 
esis, these must all lie in the left half p plane for 
k # 0. This is true if fo (v )  is lfaswellian, though 
the detailed shape of the p , ( k )  is not yet kno\i-n 
for all li.G 1:or the following demonstration. no dc- 
tailed knowledge of p , ( k )  is necessary. For ease in 
visualization, we represent the p , ( k )  as in Fig. 1, 
though more exotic shapes would do cqiially 1~11. 
?\‘or \vould the following argument he in\-alidated 
by possible branches in p ,  (1:). 

We are coiiceriied u-ith the analytic heha\-ior of 
the integral J Si:’ d~ ( p  + ilic), where 

For a particular p ,  Rc p > 0, the siiigiilarities 
of the two‘terms appearing in the convolution (12) 
lie on the curves shoxn in Fig. 2. The plane drawn 
is the complex p’ plane, and the singularities of 
af:!:. /au lie soiiiewhere on the curves opening to the 
left, while those of EjY)L,.,-Df lit. somewhere on the 
(displaced) mirror-image curves in the right half- 
p!a??t.. =! )?$/ of the allowed \-dues of 1:. 1;‘ can he 
choqen, xncl wo can any p. uith Re p > 0. The con- 
tour of p’ integration is shoxvii as a 

t R e  p-o 

FIG. 1 .  The solu- 
tions of Dk,, = 0 
(schematic), with k 

P- lup 

dashed line. 

considered as a 
va r i ab le  parnm-  
eter. As IC -+ 0, 
p , ( k )  .--) f iw,. 

I 

fRe 6-0 ! 

FIG. 2 .  The complex p’ planr for calculating the convolution 

(schrmatic) with Re p > 0. The singularitirs of E ( ’ ) L ~ . , , - ~ ,  
lie on th r  curves in thr right half-plane, those of ? f k , p , / a v  on 
those in the left. The contour of  p’ integration is shown as a 
dashrd line. 

There is also a pole of df:’;. ‘ au  at  p’ = -ik’v, 
but the coiitour of 2: integration can be deformed 
to pass around it in the usual way, upon interchange 
of dv and J dp‘, so it  cannot contribute a singu- 
larity to E::); thercforc it is not shown in Fig. 2. 

Clearly, the integral is iionsingular for Re p > 0. 
XOK allow p to move into its o\vn left half-plane, 
and observe how a singularity caii arise. The con- 
tour of p’ integration can be deformed to avoid 
any of the singularities of the integrand (see Fig. 3) 
until the time when the singularities of EL!)k,.D-Dp 
and af:!;. ’av first meet. Then the siiigularities can 
no longcr t)c avoided, aiid a Pingnlarity of the con- 
\-olution (considered as a function of p )  can develop. 

Thc hrqt ilnle this can ilappcll i.: for 

(13) 

for some k’. Eliminating p’, aiid calling the new 
possible siiigularities p2(1;), 

p - p‘ = p , ( k  - k’ ) ,  

p’ = p,(i:’j, 

pl( l ; )  = p , u i  - k’) + p,(k’) .  (14) 

FIG. 3. The con- 
tour deformed, for 
Re p < 0. The 
singularitics may he 
avoided until the 
s i n g u l a r i t i r s  of 

lide” with those of 
E(’ ,-if >,-n, “col- 

Re d-o! 

In fact, it seems likely that p , ( k )  has a doubly infinite 
number of branches. See J. S. Hayes, Phys. Fluids 4, 1387 
(l961), and B. 11. Fried and R. M. Gould, Phys. Fluids 4, 
139 (1961). It can be shown, however, that for each k ,  there 
exists a rightmost p , ( k ) ,  which lies to the left of the imaginary 
axis if k # 0. 
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As li’ is allowed to range over its permissible 
values (whichever ones are relevant to the problem 
at  hand), the maximum value of the real part of 
the right-hand side of (14) is always a finite negative 
number for k # 0. In  the special case k = k’ = 0, 
E::’,, , p - p ,  vanishes and no contribution can arise. 
Thus 1 X::’(v) d u / ( p  f iku) can always be ana- 
lytically continued a finite distance into its left8 
half p plane. 

It will be apparent that an inductire proof to 
nth order involves nothing new, since, as can be 
seen from (6) and (7), the only properties that  need 
be invoked are that E::’, . . . 7 E‘”-” hu be singularity- 
free for li # 0, and Re p > some finite negative 
number which may depend on k .  It is not so clear 
what the pictures mill look like, and they may 
become quite tangled. It is important to note that 
for E:,””’, the j’ du must be taken inside all the 
various coiivolutiori integrations, so that there will 
be no contributions from p = --iktl, p’ = -ik‘zl, 

If the nth-order singularities [in addition to the 
pl(/c)] are to he called p,,(X), thehe may arise at 

= - i yv ,  . . . . 

p,(k) = p,,-,(k - X’) + p,(k’) .  (13 

Here, j is allomed to run over the numbers 1, 2 ,  . . . , 
n - 1, and /if is to range over all its allorved values. 
Most generally, these are all the additive combina- 
tions of those wave numbers present in the first 
order, where the sum is understood to contain up 
to n - 1 terms. 

Looking bavk at Eg. (7), it mill be seen that there 
are two type!: of possible singularities which can 
contrihute to the long-time behavior of Ei”)(t): the 
zeros of DL,,, which are the same in any order; arid 
the singularities of the type of Eq. (15). The t + 

form of EL”’(t) will be govenied by which types 
have the greater real parts for given k .  This question 
will now be discussed. 

111. THE BOUNDED PLASMA 

If all value< of k ,  O < (1, I < m,  arc allo\ved to be 
present in f ~ ” ( u ,  0), the question of thv “rightmost” 
singularity of EL;’ becomes tricky. In fact, it is not 
possible to bouiid the damping decremrrit from 
below. For (wimple, if one picks X ’  = $k  in Eq. (14), 

lie I-)?(/,) = 2 lie pt(+/:). (1 ti) 

Usiiig the usual I,andau ~ x p i ~ + - i o u ~  for Re p ,  ( k )  

for the Maxwellian case, 

The higher-order poles may move to the right of 
any particular point in the left half-plane. However, 

f k l ’ ( v ,  0) du is presumably also going to zero as 
1i + 0, so the question of relative damping rates 
gets tangled up with the question of the details 
of the initial wave packet. 

The confusion is readily removed by any device 
which will bound (I?( away from zero. Such a device 
is to confine the plasma’ by perfectly reflecting 
walls a t  z = 0 and 5 = L, say. 

It is shown in reference 1 that such a plasma is 
equivalent to a certain unbounded plasma, but with 
special restrictions. The plasma is defined outside 
0 < z < I, as having a perturbed distribution 
f(l)(z, u, 0) which is periodic with period 2L, de- 
fined in the region -I, < .c < 0 by 

(18) f ( ’ ) ( -T ,  Z J ,  0) = f ‘ ” ( T ,  - V ,  0). 

I t  follon at once that 

f:L’(v, 0) = s(k - k,,)f;:l(u, O ) ,  

I (19) x., = 0 ,  f T/L,  =t 2 T / L ,  . . . 

(20) 
E\‘‘ - - p 1 1  k = all k,, (21) 

(22) 
By virtue of Eq. ( : 3 ) ,  the /i = 0 Fourier component 

has no electric field associated with it. The lowest 
value of IX.: n-hich is present in El:) is, therefore, 

(a) 
The point is that the same method-of-images 

technique applies to the nth order; indeed it is 
easy to show that, given the conditions of (18)-(22) 
and the formalism of See. 11, 

f:t’(- t , ,  0) = f“,‘,(u, 01, 

f;;,)h) = fi’; J -v). 

k p  - 

’ 1; /,*,n = n/L.  

Sj;’(z)) = ,~“;‘,,(-v), n > 1, (24) 

which satisfies the reflection condition, order by 
order.‘ 

Kow consider Eqs. (14) and (15) for the present 
situation. The values k ,  k’ can only be selected 
from the numbers 0, AT’L, f 2 ~ , ‘ L ,  . . * , and not 
more than one of the two can be zero. Generally, 
p 2 ( k  = f~ ’I,) is the rightmost pole of E;:,’, so it 

Alternativdy, one can view this ae a result of thc: non- 
linrar invariance of Eq:. ( la ) ,  ( l b )  under the trxnsforma- 
tiom ( r ,  u )  + (-x + 2 4  u ) ;  (5, v )  + (--x .  - u j  for these 
initial conditions. I am Indebted to C. D. Gorman for this 
remark. 
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is apparent that  the rightmost singularity of E::’ 
can never lie to the right of the rightmost pole 
of EL:’. Since D,, = 0 provides poles in every order, 
the t --+ a, behavior, as far as the damping rate 
goes, is the same for every order. 

IV. DISCUSSION 

Insofar as the perfectly reflecting model is valid for 
laboratory plasmas, and insofar as perturbation 
theory to all orders is an accurate representation of 
Eqs. (I), the long-time Landau damping rate should 
show no dependence upon amplitude. As far as we 
are aware, experimental evidence on this point is 
totally lacking. It can be made to seem plausible, 
however, if we note that in the nth order, the system 
to be solved is just the linearized T’lasov equation 
with the inhomogeneous driving term A‘(”), which 
consists of only lomer-order, damped terms. Gen- 
erally, the longest wives damp most slowly, so that  
in the linear problem, these persist the longest. 
I n  the nonlinear problem, however, one is no longer 
free to specify which li values are present for all 
time without actually doing a calculation; they are 
in general quite mixed up by the S‘“’. The function 
of the Tvalls is to provide a cutoff in k space below 
which the disturbance cannot run. 

As was the situation at the time of writing ref- 
erence 4, a satisfactory proof of convergence, di- 
vergence, or asymptoticity of the series represented 
by (6) and (7) is still missing. I n  view of the com- 
plicated form of the nth term of the series, it does 
not appear likely that a proof mill be forthcoming 
in the immediate future. One of the purposes of this 
calculation was to provide a qualitative prediction 
by means of this expansion which might either be 
verified or disproved by a numerical calculation. 

In  this connection, two points should be made. 
First, the present theory, like Landau’s, says 
nothing ahout how long one has to wait before the 
exponentially damped regime sets in; the result of 
Sec. I11 concerns only the magnitude of the eventual 
damping decrement. Second, when one speaks of 
the limit t m , one must bear in mind the following 
limitation, first pointed out by Backus.’ In  the 
usual linear Landau theory, the ratio which is being 
neglected is ‘I.,”” aj‘”/’aci / lE(’)j~,(~)’.  Due to the 
presence of undamped terms in the perturbed dis- 
tribution function which go aq esp ( - -d;r t ) ,  this 
ratio i i  growing proportionally to t .  Therefore, 
cventually, the terms one i> throwing away become 
as large as tho-e one is keeping. If the perturbation 
is measured by an ainplitutle t, then clearly this 

G. Axckus. J. 1Inth. PhJs 1, 1;s (l!M)). +e Src. VIII. 

limitation only becomes important after a time of 
order 1 ‘E. Since the Landau damping decrement is 
independent of e, this does not rule out the possibility 
of seeing Landau damping for long times 5 0 ( 1 / ~ ) .  
It is in this Sense that the limit t -+ a, must be under- 
stood in the preceding calculation. The difficulty, 
unfortunately, is present to nth order also, and it 
seems likely that it is an inherent property of 
T‘lasov’s equation. h rigorous analysis of the true 
t --+ m behavior, of times 2 O(l / e ) ,  might reveal 
some other type of decay (say, as some power of l / t ) .  

The principal alternative to the present expansion 
which has been put forward so far is the so-called 
11 quasi-linear” theory of electron plasma oscilla- 
ti0ns.l’ The following are features characteristic of 
this theory: 

(1) The relations 

are assumed valid for all time (Ir  is just a normaliza- 
tion constant). 

( 2 )  The Mh Fourier component of the distribution 
function is assumed to be given by 

for all time. 
(3) The k = 0 component of f ,  unexpanded, is 

taken to be the definition of fo. 
(4) j o  is assumed iu Le u “~loidj- i-arj-ing“ fmctior, 

of time, ~hicl.1 h-elop.s according to af, , ’at  = 

(D dfo au) where 

(3)  wk is dctermiried as a “slowly varying” func- 
tion of time hy the t -+ CD Landau relation. 

K e  must confess a lack of understanding of the 
motivations, both physical and mathematical, of 
these assumptions (none is anarded a proof). 
Assumptions (1) and ( 2 ) ,  particularly, srem to run 
contrary to the entire body of results of the linear 
theory, in which the equation for the electric field 
is qatiified oiily iii the. t + m limit, and ill which 
the relation for thcl distrihution function is never 
sati-fied, e\ct,pt for a highly 4ngular (and therefore 

10 1 1 Vetlvno\, J ,  I’ Velihhov, It Z Y,++T~, I\ucl. 
Fueitrn 1 Y2 ( 1‘K) I  zhid l°K? suppl . p 403 1 e~~rnruhat 
similar thc o n  d e ~ l ~ n g  n:th the unitaMe ( 

at the 1961 >dxl ) i irg  (‘onferencc t ) T  \I. 
D Pines, and will d s o  appear in n qiippl~ment to Yii( 1r:tr 
Fusion 

-- 
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physically unlikely) set of initial conditions.” The 
entire theory seems to be based on a (tacit) attempt 
to force too detailed an analogy between the be- 
havior of a collisionless plasma and that of a fluid- 
type continuous mediuni. Landau showed unequiv- 
ocally that for finite times, all frequencies are 
present in the spectrum of the kth 1:ourier component 
of the electric field, for an arbitrary initial perturba- 
tion. Any attempt to identify “time scales” on which 
the various quantities evolve will call for a high 
level of mathematical precision, indeed. 

Note added in  proof. Given the slab conditions 
of Sec. 111, a denionstratioii nearly identical to that 
of See. I1 shows that, not only is E::) singularity- 
frec in the region Re p > 0, but /;;) is also without 
singularitics in this region, except for a simple pole 
at p = -ih. This shows explicitly that this expan- 
sion is not plagued by the “secular ternis” which 
accompany straightforward expansions in powers of 
the particle interactions. [See: E. A. Frieman, 
J. Math. Phys. 4, 410 (1063), and E. A. l;rieman, 
S. Bodiier, and P. Rutherford, l’rinwton Plasma 
l’hysics Lab. Report 31.kTT-lCi9 (uiipiiblished) .] 

The Xt terms of Backus, descrihetl i n  Sec. IV of 
this present work, arc of a qualitatively different 
character from the uiual “,iecular terms,” aid have 
not, to our kno\vledge, been successfully handled 
by anyoiic as yet. Thcy are quite gciit3rally present 
for both the liountled and unbouiided cases, and 
are not contingent upon any special properties of 
the D,, fuiiction. The proof of the absence of the 
ordinary “secular terms’’ applies only in case therc 
is a lower hound in li space. 
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APPENDIX: EQUIVALENCE OF THE NTH ORDER 
NORMAL MODE AND LAPLACE TRANSFORM 

SOLUTIONS 

We includc a demonstration of the equivalence 
of the two methods of doing perturbation theory 
to all orders given in reference 4-Laplace transform 

11 N. G. van Iiarnpen, Physica 21, 949 (1955). I<. M. 
Case, Ann. Phys. ( W .  Y.) 7, 349 (1059). 

and singular normal mode. This is offered not so 
much because it fits logically with the preceding 
material, but because that it is felt that  it  remedies 
a lack of reference 4. 

To save space, we refor to reference 4 for notation. 
The problem is to show that by substituting the 
“initial value” of Eq. (31) of that paper, 

into the van I<ampen-Case” expression for 
E:”(t > 0) as a functional of f:”(c, O), one arrives 
at the same expression that one gets from Eqs. (7) 
and (10) of this communication. In  (25), the EL:) 
which appears is a Fourier transform, defined by 
27rS;:) = Sj;), if p = - i w .  

For the van Kanipeii-Case E:”(t > 0), one has 

(26) 
2e 
x - m  

~ ; ‘ ) ( t  > 0) = J ~ + ( v ) e - 7 ~ ~ ~  dv, 

Replacing f : ” ( u ,  0) by Eq. (23) ,  and using the 
l’lemelj formula for the principal value function, 

s:“:~(v’) + s:”:of(v) du, 
mz v - u  

(28) 
where IVP h a w  used the analyticity of Si:) for 
Im w > 0. 

Sotiiig that as t O , ,  

dvf s:”; I (vf f) ” ( U ” )  
- 27ri -7, s (.’ - v - ic)(v” - uf  - i€) v - v - i t 7  

we have that 

dve- -ikvl - 

1 

(30) 
This is just what one gets from Eqs. (7) and (10). 


